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’*brimitives, and finally three different convex-hull algorithms. All these
algorithms should be noted for their simplicity rather than complexity;
many of them are parallel versions of known serial algorithms.

Ay Most of the algorithms discussed in this paper have been implemented on

$ the Connection Machine, a highly parallel single instruction multiple data (SIMD) .
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Abstract S
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This paper deseribes several parallel algorithims that solve geometric problems. The _“':-
aleoritlims are based on a vector model of computation -— the scan-model. The purpose -
C . . . g

of this paper is both to show how the model van be used and to show a set of interesting

aleoritlims, - \
We deseribe a A-D tiee algorithm that, for n points, requires O(lg n) calls to the prii- :"

.

itives, a closest-pair algorithm that requires O(lg n) calls to the primitives, a line-drawing .
aleorithin that requires O(1) calls to the primitives, a line-of-sight algorithm that requires ".
O(1) calls to the primitives. and finally three different convex-hull algorithms.  All these g
aleorithims should be noted for their simplicity rather than complexity; many of them are :::'
‘Q»

patallel versions of known serial algorithims, ‘-'_.
Most of the algoritlims discussed in this paper have heen implemented on the Connection :-‘

hE)

Machine, achighly parallel single instruction innltiple data (SIND) computer. »
]
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1 Introduction

u

]

]

]

]

' The purpose of this paper is twolold. Fistive it describes a set of elegant. practical algo-
rithms for solviug a diverse set of problems in computational geometry aud graphics. See-
ondly. it helps demonstrate that the scan-moddlis a viable model of computation. These two
purposes complement each other: the model allows @ simple description of the algorithms.

" and the algorithms demonstrate the power of the model.

- Researchers have suggested several synchronous parallel models of computation. The

. most populdr of these models are the parallel randonaccess machine (P-RAM) models [13].

20 X P-R'AM counsists of a set of conventional processors attached to a single shared memory.
I"ﬁ)ééf&()l:s commuunicate through tlie shared memory: one processor can write a value into
s pklg..mumuui and another processor can read this value. Rescarclers have suggested several
variations of the P-RAM models. These variations mostly differ in whether or not they
‘periit ;concurrvnt reads from. or concurrent writes to, a unique memory location. By
fassuniidg that memory references take wnit-time. the P-RAN models have heen used to
b determine the asymptotic rununing time of many parallel algorithis,

We suggest another class of synclironous parallel models of computation defined in terms
of a sct of primitive operations that work on arbitrarily long vectors of simple values. We
call these models, vector models. The models differ from P-RAM models both n that
they are single instruction multiple data (SIMD) models, and in that there is no concept

of a memory shared among many processors. Elements in a vector communicate through a

permnutation primitive rather than a shared mcmory. As with the P-RAM models, vector
models can be used to analyze the asvmptotic running time of algorithius. by assuniug
thiat a set of primitives take unit-time.

Since vector models are SIND, they can be efliciently mapped onto a wider range
of architectures than P-RAN models can. As well as being implementable on staundard
serfal computers and ou mnltiple instroction pavallel computers, they can be efliciently
Bnpiciented on vector processors. such as the veetor processor of the CRAY svatens [21].
or ~sinzle tnatraetion parallel computers. such as the Connection Machine [16]. On the other
lad. ~iee PARANM models are mliiple instonetion multiple data (MINID ) wodels, they
are ore powerful than vector aiodels. s should hecore evideut in this paper. and as
swow i elsewliere THOL this addidonad power is not necessary for a broad range of practical
aleorithins. We ulso helieve that vector models tond to lead to stmpler and more conerere
aleorithin deseriptions than do P-RAN models,

oo sean-model i o particular veeror model in which three classes of vector opera-

tions ave considered wrdd-tie primitives: elementwise arithimetic aud logical operations:
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pernmutation operations: and scan operations, a type of prefix computation. By wndid-tin
R primitives we mean that they require approximately an equivalent duration of time wlen
LY executed on equal length vectors.
; In this paper we describe several algorithins based on the scan-model. The first is an
Kt algorithin that constructs a A-D tree. A k-D tree is a technique for splitting 2 points ina &
ditnensional space into v regions cach with a single point. The A-D tree technique is used
o as a substep in o large wuther of applications ranging from rendering images to machine (r
1}
';1 learning [20]. For v points. the algorithm we describe takes O(klgn) calls to the primitives ‘
4 usivg vectors of length O(n). This algorithm is optimal in the sense that even if simulated
LA
on aoserid waeline, 10 will run in the same asymptotic running time as the best seriul
¢,
A"l aloorithng.
’. . . 3 . .
12:: Baused on the 2D tree algorithun, we describe a two dimeusional closest-pair algorithm.
g In the two dimensional closest pair problem we want to find the pair of points i a plane
. .
- Heat are closest 1o cacl other (Buaclidean distance). This algorithm is a parallel version
- of aualgorithin of Bentley and Shawmos [9]. Tor n points in a two dimensional space. our
L, >
N aleorithion requires Oglg n) calls to the primitives using vectors of length O(n). '
*\ ll. . 1 1 I . l - l H . 1 P 1.. o - M L' ]. o7 H I N lI !'. ey 3
N o third algorithm is a line drawing routine. Line drawing is the problem of: given
' . 4 pair of points on a two dimensional grid {the two endpoints of a line), determine what
R -
s
@ pixels fca linite resolution grid lie on a line between the endpoints. This routine requires
e
N Oy calls to the primitives using vectors no longer than the number of points in the line.
, , . .
- Phe rontine lis been extended to render solid objects [25).
"l . . . . . o . . . I3 .
Fhe fourth ddgoritlon s a line of sight algorithm.  Given a grid of altitudes and an
obsepvation point on the grid. the algorithin returns the points visible from the observation
point. A dine of sight aleoritliun can be applicd to help determine where to locate potential
J N . . . . . . - - .
X evesores, Por examples whoen designing a building, a highway or a city dump, it is olten
-." . . . - . F—
Y mtormative to huow from where the “evesore™ will be visible.
:i . . . . ‘e . .
" We linallv deseribe three planar convex-hall alzorithms, Given i points in the plane. the
plaar convex il problem fiuds which of these points lie on the perimeter of the smallest
{.
o comvex tevion thit coutatns all points. b wao of the convex-hull algorithins we deseribe are
. i
b ~tmple ated are dikely 1o performe very well in practice, but they are not provably optimal ‘
. ! ‘ ‘ . . . e . . . Y
5 cottitin sets of carelully seleeted points will perform badly, The third algorithm is more ]
. complicated and probably less practical. but is theoretically optimal. This algorithm is
| i A i Y o} g
D ba~ed o a paradiel aleotithin destened for the concurrent read exclusive write (CREW)
.
L - PORAN mode] [l;l}.
,.) Maost of the adeorithins we deseribe o thi- paper have heen implemented on the Con-
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nection Machine. T'he code we shiow in the text with some syutactic changes is actual code )
7 .
5 used to execute the algoriths. §
» Ry . . . .
t I'he remainder of this paper is organized as follows: :I
|
! . C . . ‘
' o We define the scan-model in terms of the primitive operations it supports.
o We introduce some powerful techuiques based on the scan-model. ‘These technigues )
3 are used extensively in the description of algorithms. 1
) . . . X
o \We describe the algorithms. s
*
U
T 2 The Scan-Model
.. . . . o, . . .
The scan-model is defined in terins of a set of primitive operations that operate on arbitrarily
long vectors of atomic values. By a vector we mean a one dimensional array (an ordered ¥
set). By atomic values we mean values that can be represented in O(lgn) bits in this 4
: paper we only use integers, floating point nmumbers and boolean values. We assume that all 4
3, i
primitives require approximately an equivalent duration of time when operating on equal
length vectors. We call this time “unit time”. To determine the actual rauning time of “ne '
\ - B -
an algorithm on a particular mmacline, we need to know both the number of calls to the
primitives and the length of the vectors wsed!. :
" I'lie scan-model has three classes of unit-titne primitives: elementwise arithmetic and
". . . . . . .
\ logical eperations, permutation operations, and scan operations, a type of pavallel prefix 2,
a .
computation. ]
[ -
- Elementwise Primitives :
b . °
o Each elementwise primitive operates ou equal length vectors, producing a result vecetor of K
> cqual lengths The element ¢ of the result is an elementary arithonetic ar logical primitive d
. suchoas +0—0v0 or and not applied to clement §of cach of the input vectors, oy "8
~ exatnple: )
N .
] i . . . b
. Ehe vector Fngthoas important even on parallel machines since for sulficiently fong vectors, multiple WY
‘ : claments mast be allocated o cach processor and cadcl processor must loop over these clements when \_
- CXCCHTNE an operation
=
" 3
- \
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In addition to the standard elementary operations, we include an operator select that

T T, S atan bt

' »

‘\%f
A = [5 1 3 4
It = [2 5 3 N
A+B = [T 6 6 12
AxB o= [l0 5 9 2

3

2 6]
6 2]
8 ¥
12 12

takes one boolean argument aud two other arguments. Based on the boolean argument.

the select function will return either the first or second of the other two arguments.

A = 5 1
B = [2 5
F = [T F
select{FF', A.B) = [ 5

Permutation Primitives

The pormuatation primitive takes two veetor arguments -~

—

m L

[0 o 3NNNEN

-n

vl

[SCEE e VO

a data veclor and an index vector

and permutes cacly element in the data vector to the location specified in the index

.y vector. For exampie:
Qe
Vector Index = 0 1
A (data vector) = {o ¢
Loindes vector) = [205

R

et ———— ]

.
permute( \. [} o |
[t is an error for more than one element to have the same index -—- the permutation

must he one-to-one. This restriction 1= similar to the restriction made in the exclusive read

exchrsive write (FREAV) P-RAM model, bnowhich it s an error to write more than one

vihue toa particnlar menory Joeition b o e,

To allow communication between vectars of ditferent sizes. we include a version of

the penmute primitive that returns o vectar of dilferent leneth than the source vectors,

This ver-ion takes two extra argnments: a de fuull voetor, wliich specifies the length of the

destination vector awd puts defatt vadues in positions that do not receive any value: and

a sclection coctoro which masks ont cortain elenients o that they do not permute, Yor

cranple:
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Vector Index = [0 1 2 3 4 5 6 7
\
R [}
, A (data vector) = fo t ¢ m e r v 2 '
B D (default vector) = [ r ¢ ¢ )
k N . '
' S (selection vector) = [T F F T F F F F] h
I (index vector) = [2 5 4 3 1 6 7 0
\ ,
[ > \\ &
| permute(A, [,S,D) = [f r o m] !
) d
w . . .
X Scan Primitives
The scan primitives execute a scan operation, sometimes called a prelix computation, :
o i vector.  The scan operation takes a binary associative operator £, and a vector A
. Ve A
X [y ayy ey, ] of nclements, and returns the vector [ag. (o P ay ) ..., (€0 ay Do Fran_y)]. ;
. . . .o &
[ this paper we will ouly wse plus, maximum, minimum, or and and as operators for the .
scan primitives. We will heucelorth call these scan operations +-scan, max-scan, min-scan, ;
] .
) or-scan and and-scan. Some exaniples: "
'
! A = [ 1 3 4 3 9 2 6] L
' A a
! +-scan(A) = [ 6 9 13 16 25 27 33 \
max-scan(A) = [5 5 5 5 5 9 9 9] '
N :
L}
N Some readers wight be skeptical about considering the scan operations as “unit-time”
. “
N srimitives. Our justification is straightforward. Ou a serial machine, it is clear that the .
! l o <
- . . . . . . . o
. scan operations using situple operators such as + will be just as fast as the cther primitives:
Lo . . . S <
all the primitives will take O(n) time on vectors of length oo On a parallel machine it is i
o . . . . . ,’(
"y not hard ro show, botle in theory and in practice, that a circuit that exccutes the scan &
o . . . . . . . . O
” operations can be built with less Lardware and will run just as fast, or faster, than a circuit .
3 L . .
. that exeentes a read ar write into a shared memory (such a read or write can be used to
.
inpicwent the permatation primitiver. This is argued inomore detail in [11]. Admittedly, =3
" . . '-
. both the sean and a shaved memory reference take at least lgn real time. but we are only 5
g arguing liere that the primitives take approximately the same amonnt of time on equal -
. length vectors, N
X [ the deseription of ddgorittins we will often loosely refer to vectors in which ecach
clement contain ore tan one atomie value, For examples we will ise vectors of points in A
A . . [,
y w bwo ditenstonal space; cacl point has two values, an o and y coordinate, so the vector ~
i | y
] X
[ 6) 1, (00 7)) :
Lruar .
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reprosents the three points (3. 6). (4 3) and (9, 7). At the primitive such a structure
vector would be implemented with two vectors but a higher level language could support
record-like vectors in which cacli element has some constant number of values.

2.1 Segments

This section deseribes a method that allows a programmer to take a vector routine? defined

to work on a sinele set of data and then apply it to many sets in parallel. For example.if

we lad 4 vector routine that sorted a set of values. we could apply it to sort many sets of

data in parallel. Oroif we had a vector routine that, given endpoints. determines the pixels
on i line. we conld apply it to draw many lines in parallel.

The technique involves dividing a vector into segments and placing one set of data in
cach segment. To keep track of Low a data vector is segmented. we associate with the
data vector a scgicnt-deseriplor. A ~cgmaut-deseriptoris itself a vector which has as many
et s seement . of the data veetor: cach of these elements contains an integer which

svocities the fength of the segiment s For example:

A = B 1 3 4 3 9 2 0
scgmendt-deseriptor =12 b2
A = 5 1] [3 4 3 9 [2 ¢
Heuwcelorth. the notation
A o= o B4 3 9 2 g

is shorthand for a pair of vectors: the data vector along with its scgment-deseriptor.

For eacli primitive of the scan-imodel we define a segmented version that works inde-
pendenthv within cacl seament. Viguie 1 shiows examples of segmented versions of the
pritnitives. The scomented version of the pernogation primitive bases its fudices relative
tothe beeinning of cacl ~cwiment so vadnes perute within o seciment it is an crror for
S index To peierence Gotside of the sevent. The secinented version ol the scans primi-
Tives tostart of thee Looinnine of cacl <coment ' Pho cecipented vepsion of the elenientwise

operations are unclineed.

SA Vector totbine is o toutiee defined i tetms of the vectorn primntives we discissed,
et are sevoral other wavs of teprosenting ~ogments (1o bot we hnd this vepresentation the most

convenient.

[ . . .
A simther operation was suzgested by Sclhwaty L

.
s
& N T )

PR Al AUl B Py
(.l.("'-. f.";.'l.-/.'f“f"

o

S

s

[

g

YA




T TN
NG
\ -
o

YA WL

»
.. L
AT ',
’..’. .'
. 4

A =B B4 3 9 2o
B = [t oo R oo 3 1] [ 1
+-scan(-) = [ ¢ {3 7 10 19] [2 ¥
max-scan( ) = B o3 B o4 49 2 6
permute(d, B) = [I 5 [+ 9 3 3] [2

Figure 1: Examples of the segmented versions of the primitive operations.

All the segmented versions can be simulated with a small constant number of calls to the
unsegmented versions [10], but they are so useful that in practice they might be implemented
directly. We will henceforth assume that the segmented versions of the primitives are

themselves primitives.

We now return to tle initial claim of this section:

-4 . Y H
8 AN XA s

"

The Segment Lemma: With a segented versioa of all the primitives of the scan- ;ﬁ:
model, we can apply any routine defined in terms of those primitives to work on a single f'_:.

set of data, to multiple sets of data independently and in parallel. . ’-:::

® ®

We won't prove this lemma in this paper. but it should be iutuitive; a proof is given T ‘::

in [10]. This lemma allows great simplification of the code needed to describe parallel :
algorithuns. o
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R
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3 Some Simple Operations

4!

I this section we deseribe several useful, simple operations that can be implemented with

« s
]

a stall constant number of calls to the primitive operations [11]. As with the segmented 7
- I . ~ . : \
versions of the primitives, these operations are useful enough that they wight themselves iy

be considend primitives and be implemented divectly,

“e s o
f'r';'a

distribute values longths

AT g Ve
,{.{&'_‘.

e distnibute operation takes a vector of values and a vector of lcngths and distributes

*r

cacl value into a segment of length specitied by fongths, For example:

A = [T 3 H}
L = o4

N
v

4
]
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distributes A1) = [T Ty 33 3 3] [N R]
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L A similar operation was first suggested by Batcher [6] — he called it an irregular spread-
ng.
index leiythes
The index operation takes a vector of lengths, creates a segment for each Tength. and
] . Loy .
returns the index of cach element within cach segment. For example:
— i 2
J. = 2 1 2]
. index(l.y = [0 1} 0o 1 2 35 [0 1]

element valucs (ndices

The element operation takes a segmented vector values, and a vector of indices with one
element per segment, Lachindex /s used to extract the ith element from the corresponding
segment jn ealues. For example:

A =
1 =

o
3\
_— T

element(A. )

~1
o
—_

-reduce valucs

The reduce operations takes a segnieuted vector of values and combines all the clements
in caclt seenent using one of five binary operators: +. maximum, minimum, or or and. It
returns a vector with as many clements as segments.

Some Examples:

A = L) B o1 3 9 [2 ¢
+-reduce( .\ ) = (6 19 ¥]
max-reduce; \) = {5 0 4]

append caliwe~! calucs?

Ihe append operation takes two sceaimentod voctors of calucs with the same wmnber of

secinent-. ANnd appends the teo vertors secimentwise, For example:

A

- {(/uu (g 41\,_\j r“lll} [”.’U (l-“}
N 1
“ T ‘/)‘,,"' [I)“, /I”I [[))U ,1-:]]
append: A\ 13 {N..u v dur I vha b /'11] [”:u azn by /'31]
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. pack valucs fluys
» 25} . .
~ T'he pack operation takes a seguiented vector of valucs and a scgmented boolean vicro
;ﬁq of fluys, and packs all the clements with a T in their flag into consecutive elements, deleting
L4 . . . |
-~ elements with an F in their flag. For example:
A
: A = [5 1] 3 4 3 9 2 ¢
o I = [T Ff T F F T} [T T]
N . o e
et packi A. 1) = [5] [3 0l | ]
*
b A similar operation was first suggested by Batelhier - he called it an irregular compros:
slotr.
f.'
N .
:.’\ sphit ealues flugs
o
" . . .
N The split vperation takes a segimented vector of valucs and a segmented boolean vector
'.
<G . . . . .
I ¥'s of flag=. aurd packs all the elernents with an F in their flag to the bottom of each segment
- aud elements with a T inorhelr flag to the top of cach segment. It also splits cacl seginent
. in two at the boundary between the T and F elements, For example:
> .
e A = [5 1] B 4 3 9 [2 o0 )
e I = [T F [T F F T} | Tl ‘
spht¢ACE) = [l o0 v o3 B39 1 R6
We also deline a delete-split operation which is the same as split but deletes any cmpty
Seoent
A e T e O L )
[aV o . . -
N ] = {T f [T F F TI [T T
o
N
- .o N _ ma - o e I R
_:‘_ delete-split{ A1y = 117 [3] [4 3] [3 9] 12 6,
o7
4
7 '
rank-sphit raides flags
o The rank-split operation is siiniiar to the split operation except that the ranks arcument
-" . S . n . . P
:.-_ noest b valid ser ol fudices Tor the permuration primitive. As well as splitting these
) indicescthe rank-sphit opevation tennmdbers them so thes are valid within the now seenient-
D '
e bat maintain the same orders For exangple:
P
o A S (L O e S (P
N [ = T F T F F TP T )
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Key = 4 T 2 1 5 3 7 2
Pivot = )

Key > Pivet = [F T F F T F T F
delete-split = o2 ] 30020 7 5 7]
Pivot Value = 3 7

Key > Pivot = [T F F T f] (T F T]
delete-split = 2 o2 3 B3 T
ivor Value - 2 A 5 n

Keyv > Pivoe = [T F T} [T F] [T] [T T
delete-split = [ 2o 3y ] B 7T

Figure 2:  An example of parallel Quicksort. Each pivot is picked at random from within a

segment.

In this example. the F part of the second segment starts with the indices 1 and 30 these
are renwnbered to 0 and L so that they represent a valid index set for the new segments
and maintain the same order. The rank-split operation is used to update pointess when

performing a split operation,

3.1 Recursive Splitting

The segment abstraction and the primitives we described allow simple definitions of
recursive routines that start with some set of values, split this set into subsets and recur-
sively solve the problen on eacl subset. Weawill eall this techunique recursive splitting. As
an exawple of sueh o technigues consider the following parallel version of Quicksort. As
with the serfal aleorithim. the aleorithm pieks one of the kevs as a pivor value, splits the
Kevs into two setssoone vitl creaer valued heve and one with Jesser vabued kevs, and e
recirses on eacl ser,

Figwre 2 shows anexatople of thee paradlel version, ‘e routine picks a random elenent

Proincvach segment as o pivol value s-iue the element operation”. The algorithng distributes
Hiks pivor value over each seement using o distribute operation, aud splits the kevs hased

on whether a key is greater or fess than the pivot using the delete-split operation¥. Tl

Favsume that there isa primitive clenentwise random operation whicl in cach element takes an integer
and returns a psendo-tandom rumber less than that integer.

MW the deletessplit operations instead of the split operation so that we never have more segnients
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algorithm is now applied recursively to the result. When the numbers within all seginent are
in non decreasing order, we return and merge the split sets. As with the serial algoritlun,
this algorithm is expected to complete in Oglgn) steps’. In the scan-model, cach step
requires a small constant nunber of operatious.

The code needed to implement quicksort in the scan-model is as follows:

define quicksort(keys){
if-auy (shift-left(keyvs) < kevs)
then pivots — element{keys, random(length(keys}))
quicksort(delete-split(keys, (distribute(pivots. length(keys)) < kevs)));
else keys}

This general recursive splitting technique can be used in most divide and conquer algo-
rithms. In this paper we will use it in the &-D tree algoritlun discussed in Section 1. the
quickhull algorithnm discussed fun Section X.1, and the binary tree scarch method discussed
in Scctiou 9.

3.2 Allocation

Another useful technigue is allocation. Mauny problems require the allocation of a set of ®
elements that can then be operated on in parallel. For example consider a line drawing

algorithim that takes as input two endpoints. calculates the length in pixels of the line.

and then allocates an element for cach pixel so that it can calculate the pixel positions

in parallel (this is an outhine of the algorithm we discuss in Section ). Also assume that

several lines need to be drawn in parallel.

Such allocation is trivial with the operations we defined in Section 3. If we have an

integer vector, in which each element specifies how many new positions it needs, we cau

ise this vector ditectly in the distribute and index operations to distribute the elements to
appropriately sized segment<s Such allocation is used in the line drawing routine deseribed

in Section 6 and i the line of sight aleorithim deseribed o Section 7.

than elenents
CThis s actually onds true ot citler the hevs wre mmgues o we sphit o thiee groups at each step

ceo= oo we sswatch Betwern <5and o altornating steps
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4 Building a #-D Tree

A A-D tree is technique for splitting 1 polnts in a b dimensional space into v regions cach
with a single point [S]. It starts by splitting the space in two along one of the dimensions
using a & — 1 dimensional plane, It then recursively splits cach of the subspaces n two,
Figure 3 shows an example of a 2-D trees AU cach step the algoritlon must select which
ditmension to split withine cacl subspace; the criterion for selection depends on how the
tree will be used. A common criterion is to select the dimension along which the spread of
points is greatest,

The k-D tree is often used as a step in other algorithms. 3-D trees are used in ray
tracing algorithms for rendering solid objects, In such algorithms, objects need only he
stored in the regions they penetrate and ravs need only examine regions they cross. This
can greatly reduce the mmber of objects each ray needs to examine. k-D trees are also
ised in many proximity algorithms such as the all closest pairs problem [15] or the closest
pair problem, discussed in next section. A<D trees have also been suggested for use tn some
machine learning algorithims [20].

The algorithm we deseribe here is a parallel version of a standard serial algorithm {22},
For e polots, onr algorithm takes O(klg 1) calls to the primitives on vectors of length n.
Vhis algorithny 35 optimal in the sense that even if simulated on a serial machine, it will
rincin the same asyvimptotic ranning time as the best serial algorithm.

In wany L2 tree algoritions, when splitting a space. one point is selected as the split
point, and this point in placed in neither side - it is used to divide the two sides. Ii our
alzorithm. when splitting a space, we place all points in one of the two sides — we assume
the split line lies half way between the points on either side of the split. For this reason.
the algoritlon might be more appropriately called a &-D splitting rather than a £-1) tree.

Our algorithin consists of one step per split. Each step requires O(k) calls to the
primitives.  Before exceuting any steps. the algorithm sorts the set of points according
to cach of the & dimensions. The sorting can be executed with the Quicksort alzorithin
discussed carliers au cnwerate-pack sorting algorithm discussed in 111). or a version of
Cole™s sorting adgoritlun [120 Tuatead of keeping the actual values in sorted order for cach
ditnension. we keep the rank of cach point along cach dimension. The rank ol & point is
the position the point wenld be focoed at il the veetor were sorted. We call the vectors
that Tiold these ranks. rand-rcctors there is one rank-voetor for cach dimension. Figure 3
show s an exaple for a 2D trees the initiad rank-coetors, and the result of the first step.

At cich step ol the adeorithn the rank-voctors will contain a segiment for cach subspace,
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point =a becdefghijklmno p]
x-rank =0 61510 7 2 4 12148 133 1 511 9]
v-rank =137 4 315611 0 9 8141102 5 12]
above-split-line? F FTTFFFTTTTFFFT T
rank-split x-rank = [0 6 7 2 4 3 1 5] (72 46 0 5 3 1]
rank-split y-rank = (6 3 7 2 5 0 4 1] (2 1 05 4 7 3 6]
Figure 3:  An example of a 2-D tree. The top diagram shows the final splitting. The vectors
below are generated during the first step — when splitting along the line L ,.
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amd the ranks within cach segment will be the correct ranks for that subspace. It suffices

)
Y . . .

: to demonstrate that we can excente a split along any dimension and generate new ranks
) within the two subspaces. 1'lie algorithm is then correct by induction.

' To split along a given dimension the algorithm distributes the cut line and determines

for cach point whether it is above or below the line®. The algorithm now uses the rank-split

% operation defined in Section 3 to split each rank-vector based on whether a point is below or
>, T o . . . Sy
K above the split line. The rank-split operation as defined correctly generates the rank within
b cach subspace. Each step therefore requires O(k) calls to the primitives: some operations
‘ . L , . .

1 to determine whether cach point 1s below or above the split, and & rank-split operations.

A Since there are O(lgn) steps, the whole algorithm requires O(klgn) calls to the primitives.

In the closest-pair algorithm discussed next it is useful to keep the rank-vectors for all

‘ thie steps. This will require that we store klgn vectors of length n.

T

i !

5 Closest Pair

- I a two dimensional closest pair problem we want to find the pair of points in a plane that

:; arve closest to each other (Euclidean distance), The algorithm we describe is a parallel ver-
W sion of an algoritlin described by Bentley and Shamos in [9]. For n points, it requires O(lg n)

i v calls to the primitives using vectors of length O(n). This algorithin requires J{n ign) mem-

) ory (O(lgn) vectors of Teugth O(n)) but can be modified to run with O(lgnlglgn) calls
L4 .. . . .

i to the primitives using O(n) memory. Atallah and Goodrich have shown an O(lgnlglgn)
> . . v »

o time Q(n) processor algorithm to solve the closest pair problem in the concurrent read

exclusive write (CREW) P-RAN model.

i Onr wgorith consists of building the 2-D tree as defined in the previous section”, and
! then merging rectangles back to the original region. Given two adjacent rectangles and
g their closest pairs. a merge step can determine the closest pair of the merged rectangle with

po’ a constant number of calls to the primitives. Because of segments, we can merge many

5 pairs of rectangles in parallel.
$ Since we have already defined hiow to build the 2-D splitting, we will only describe thie
d werging phase. The merging works on the =ame principle as deseribed in [9]. We will first
< . . . . N . - .
v review the principle and then show liow it s implewmented on the sean-model. We will

h

denote the separation of the closest pair T o rectangle 2 by ép.

.‘l
< " As stated carlier. the method for choosing a cut line will depend on the particular use of the k-1) tree.,

j “Iu this algorithin it does not matter in what order we pick the dimensions — iu fact, we could alwavs

. =pitt on the sine dimension.
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Figure 4:  Merging two rectangles to determine closest pair. Only 12 points can fit in the

28,min X 28,.in dashed box such that no two points in either .1 or /3 are closer than 4,,,,,.

At cach merging step, we know the closest pair within each of a pair of mergiug rectau-
gles A and B and want to find the closest pair in the rectangle AU B, The closest pair will
either be the pair in A, the pair iu B. or a pair with one point in 4 and the other in 3. lu
the last case, the two end poiuts must cacl lie within &, o= (¢ 4.8 5) of the boundary
between the two rectangles. We will call this region A B'(see Figure ).

If welocok at a point pin AB’, no more than 11 other poiuts in A can be less than é,,,.
away from p. Figure 1 shows the tightest possible packing. If we have the points in AL
sorted along the merge line, each point can determine the minimum distance to another
point in A8 by looking at a fixed number of neighbors in the sorted order (at most 11).
Ouce all poivts in A have found their closest ueighbor in A0 we take the minimum of
these distances 1o find &g and then caleulate the desived vesults & yg= necu{d,, .8 1y

We now show how this technique is applied in the scau-model. The merge cousists of

the following steps (each requires a constant number of calls to the primitives):

Lo Derive the vector of points i o 8 sorted adong the divection of the split fine. to
get this vector, we need only keep the appropriate rauk-vector wlhen we construet the

-1 tree rementher that whew baildine a &1 tree we liad the sorted ordoer for all
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ditnenstons for all rectungles,

Deteriue &, by taking the winhinnm of &, and ¢4, Distribute ¢, to all points

in the sorted vector of AU [,

AP ER IO
]

3. Pack elements which are within &, ., of the merge line using the pack operation into b
a new sorted vector A1
| . b
ooShifn this vector to the right and caleulate the distance from each point toits neighbor. "
Repeat this six tines to get the six neighbors on each side. :;
5. Deterwine ¢ 4y by taking the minimum distance found in the previous step using a ’
min-reduce. Take tlie mininmum of é,,, and d 45 to get d45. :.
The aleorithin will run in O(lg n) time because the k-D splitting runs in O(lgn) time b
and there are QO{lg 1w werge steps which, as shown, each step requires constant time. :3'
I the O{hdg ) space required to store the rank-vectors during the 2-1 tree is a problem,
wo can derive the sorted veetor for AU B on the Iy by merging the sorted vectors of 1 and k '
I3 Fhis meree requires O(lglan) time [10] and will therefore increase the running time 2 ]

of the whole alegorithin to Otlg g tgn), Tn the conclusion we mention that it might be

reasonable to consider the merge operation as a unit-time primitive of a vector model. If

D

we inelnde aomerce primitive, the aleoritton will run in O(lg n) calls to the primitives with

() space. o)
o~
-
- - -..
6 Line Drawing Ry
o ditensional line drawing is the problem of: given a pair of points on a two dimensional S
erid (the two endpoints of a liney, determine what pixels in a finite resolution grid lie on o
aline hetween the endpoints. Line drawing is used extensively in practice in generating N
compriter images. especialfy i compnter aided design. o this section we describe a very '.
simple oe drawing rontine, Hogeneratos the same set of pixels as does the simple digital KA
g
ditferentinl ity e tHD Ay serial techuique T197 The routine takes asmall coustant number -
o
. . . . . . N\ "
of calls to the primitives on vectars at most as Jong as the munber of pixels in the output. NS
u . . . \...
Becanse of the seginent lennma (Section 2000 the tontine can be used to draw many <

Gies i paral el The vontine we describie ha- beon extended by Salem [257 1o render solid
I . L J

‘:I’)

n.‘nv"vt'!\_

’,-.,

e basic idva of the toutine i~ 1o caleulate the wnmber of pixels ina line and allocate

aoet ol vecrors ol that Tenethe with the line information distributed aeross the veetors,

LY

i

S 845, 4|0

(AN,

-‘J.'

“a °»
&

0 e g X 2 g i

., ]l W . . .‘.-.."( s r_‘.r,_f_ Lo ..._J:.‘f\f.‘f._ \f._-r\-.\.._f._.r,\- rvl_‘



oy’
\I\J‘ o

-.\" "'\

T ‘)‘f'.-'.r-‘.- .

- oa y " bl QLA SE ALY
3
2 * —o @
1 T ¢ ?
|
1 2 3 4 5 6 7
m = (1.1 P2 = (6.2)
length = line-length(p;, p2) =5
A = increment(py, ;2. length) = (1, .2)
pixels = length + 1 =6
index(pixels) = [0 ] 2 3
distribute( p;. pixels) = [(I.1) (L.I)y (1.1) (i.1)
distribute( A, pixels) = [1..2) (1..2) (1..2) (1..2)
final-position(py, A.index) = [(1.1) (2.1) (3.1) (1)

Figure 5:

]
‘\.".\\‘

An example of parallel line drawing.

’., .....

\\'\\'\ ™

oy

{. .z.-.r."'-_'r.-. Caa

.

A R N

VA

o

\.‘('s.\ \- x'\"\.'\'\.\\ e

<

AN <

<y

s

AN L4

Y

\
iy

ALY

g
v‘;-_

5

Y |
P -“ .l.:',. ,. ‘,”.

L.-'u

g

X

»
[#

oL
- L ]
>

] ."Q"l

Rl
Vs

l.',:' '.

AL

e EY T
LA ',.'J.

-

.&z{\t,ﬁ:‘?.

I"I"! 4 e
& ‘l I’

r
L 3er]
s 8 2

Moaac¥s

v )@
NS

L4 a,




r“f.; .: &’

P
Y

3

Then based on the line information and a unique index for cach element. the elements can

caleulite their final position on the grid. Figure 5 iHhstrates o example. O
-

The code neaded 1o drow a line is: ':‘,
l.‘»

~

define line-lengthy p;. pod{maximum{{ps. X pr.xj (poy pravii} ':-.

ol

define incrementi py. po. lengthf sz

N o apa X pxy [/ lengthe e

X

¥omo (pay o opry) /[ length} o

."

e .. i L
define final-position( . A, index) »

X — pp.x 4+ round(index < A.x: d

1

N

v — p1.v 4 round(index x A.v)}

define line-drawl 5. p2){

e’ il

length — line-length{ p. p,):

vy

TR &

A~ increment{ . po. leneths

s

pixels — length + 1

-

- final-position{distribute(py. pixels;. distribute{ N. pixcls). index(pixelsi)}

L T ]

The tine-length rontine calonlates the leneth ol the line. The increment routine caleulatoes

V& 72875
;l('l’&'

the x and v inerements hetween adjaceut pixels in the line. The final-position routine

X

calenlates the pixel pozition of a point given one endpoint of the line. the x and v increments

I‘\‘l

of the Tinecand the position Gudex wong the line,

s

T he line-draw routine nses the distnbute operation to distribute pyoand the fncerement

(A over (loedeneth = 1y elements, and uses the index operation to generate a set of

T

.
£, 1y Xy

cot=ective intecers for cach clements, We noed (ine-lenetly + 1) elenients becouse weo

m e

want to dnchude bhoth endpoints,

-_(

T  Line of Sight

ke TedeJul J
Pl

P

Govenan oo by o arid ol altitndes and an observation point on or above the sarface,

“ %

h

ot

a ane of spehr alaorithn finds all points on thie ¢rid visible from the observation point.

‘

Piroare 6 chows o exnnple. A e of sighit algorithion can be applied 1o Lelp determine

. 4

whore to locure potential evesores. For example. when desiguing a huilding, a highway or

.
[

acciny dedipo it s often indornative to know from where the “evesore™ will be visib'e
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Fignre 6: An example of a line of sight problem. The X marks the observation point. The

numbers represent the altitude of each contour line. The elements visible from the observation
point are shaded.

Figure 7o Example of some rays propagating from the observation point.
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The aleorithime we deseribe u this section requires On 1) calls 1o the priviitives using
Vectors of fenetle Ofag, The basie idea is to allocate a segment in o vector for CVETY Ay
Uit propagates in the plane from the observation poiut. henceforth referred 1o as V. 1o a
boundary position cxee Pignre 700 Based on some caleulations on te points i cacl v, we
coccdeterinine ke pormnt s visible,

The aleorithn consi=ts of three hasic steps,

I Lael point poin the and caleutates the vertical angle between the harizoutal plane

that pesses throueh X (the observation point) and the line from p to X This i-
executed by distribating the Tocation of X over all points and calenlatine tloe arefan
of the horizontal dificrenee over the vertical difference.

20 The aleoritlnns allocates w st of ravs one for cacl boundary erid pojnt atidd

distribres e angios roneeach point pin the grid 1o all tie rans it helones 1o0 Fach
Py s i sewinent naovector we will call thie ray stracturc,
Ao bellowing o ray rome X to the boundary, a poiut pis visible if its inale i sreator
Ul adb the wneles that precede it in the rav. This can be determined for all PO S
meall ravs with aosingle segniented max-scan, and a comparison.
TN

A Lo Visibility information is returned back to the grid points. Since a grid point ¢ have
a position inomany rays. the visibility flags are combined using or.

Since steps 1and 3 should be clear. and step 4 is basically the reverse of step 2. we
ondy desaribe step 20 To allocate the ray structure the algorithm draws a line fiom the
obervation point 1o each boundary element using the routine discussed in Section 6. Facl
sl point micht belonw 1o severad of these s (points near N will belone 1o more STRUN
et points wear the edeesys Todisteibure the angle frome a arid point tooadl the ras it
Do~ tos b adeonit b cveates another oo mented voctor strineture the copy stracture.
Piovbe comv stvactre e leonitlon adiocntes o segttent for each and point g T e size
of e segient dor G poin pois cqnal 1o tie nnmber of 1ava p belones 1o this can he
deteninived Trone the selrive positions of g X and the bonndary. Fael poiat podistribntes
it anele to dts seement i the copy strnetnre using the distribute aperation.

Hhereis nowa Lros D mappine hetween positions in the copy strnctire and posiiions i
the ray steneture. U he aleorithim can caleulateo te permutation indices needed 1o execute
thi- mapping bised on the locarion of Vo Onee the angles have been permuted 1o the
oy strncture the adeoriiling exccntes <tep 30 To return the information baek to the arid
St tureadter step dothe ddeorithiog e the e copy strnetire hut instead of distrinntine,

oY s
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it reduces using an or-reduce. At completion, all points visible from any ray are marked
aud returned.
The Tongest vectors required by the algorithn will be thie vectors of the copy and ray
structures. It is not hard to show that for a /7 by /0 arid. independent of the location of
X, these vectors will have length 2n.
8 Convex Hull
The planar convex hull probleny iso given o points o the plaue. Hind whiclo of these points
lie on the perimeter of the smallest convex region that contains all poiuts. The plaen
convex hull problem is probably the most studied problem in computational geometry,
both because it is a shple problem. making it easy to study. and becanse it has many
applications — applications range from computer graplics [11] to statistics [17].
[ this section we deseribe three scan-model based algorithnis for determining the convex
hll of @ set of points. The first two, a parallel Quickhall {22] wlaorithin and 4 parallel
Jarvis marel algorithim (182]0 are very simple and Bkely to perforin well in practice bt
are uot provably optimal. The third algorithins is more complicated aud impractical but
is theoretically optimmal. The algorithim is based on a parallel algorithan de<iened for the .
concurrent read excluisive write {CREW) P-RAN model [1.4]. I
8.1 QuickHull
This s a parallel version of the Quickllull algoritlion {22). The Quicklull algorithion was
given 1ls natne becadse of its similarity with the quicksort algorithin. Like quicksort, tlhe
quickhull algorithim picks a pivot element. a point: splits the dita based on the pivot: and
i> thew recursively applied to each of the split sets. Also like quicksort, the pivot element is
not eiarantecd to split the data into sets with any particular ratio of sizes. so that in the
worst case, the aleorithom can tequire nosteps,
Froure s shows an exanmple of the guicklodl aleoritlone The algoritlon tirst splits tle
poctts Tinto two st gt o line that passes hetween the two e extienia s call theee
pertt~doand e hnothe scanedad this s executed with a few reduce and distribute Gpera
Uiotis. ~odie clctnentwise att onnetic caloulations, and & Spllt aperation.
Phealoonnhn now g FERSANTIN \i)iﬁ\ cach of the 1wo \lll)\i)(l"‘ IO Twa usite the
Do ooteps I b b e Lo el pout g the subspince tee perpendicnbar distance
Protc i pot to the e fe Lins can he calealatod witle i cross produet of vhe tines £r
Tpo Vhe slaonting seiect e Lothest podut frony the line b add distributes i taall othed
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Froce s Anexample of the QuickHull algorithm. Each vector shows one step of the algorithm.

Since .1 and 17 are the two » extrema, the line .1/’ is the original split line. J and \ are the
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farthest points i each subspace from 1/’ and are therefore used for the next level of splits.
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elements i the subapace et eall this point £ 1 shontd be elear that £ ies oncthie conves
Lol Pobos within the trianele M cannot be on the convex bl and arve elindnated with
a pack operation. Uhic point £ is now used to further split cacl segent based onowhiclr of
the two sides of the triangle, [eor et they falll “Hhe algoritlion is now applicd to the new
seetnents recnrsively, The aloorithnn s complered when all segmenis are empty.

Fachi step regquires asiall constant mniber of calls 1o the primitives. As with the serial
QuivkHull. for o il poiuts, the algorithm rans in Otlg ) steps for well distributed huil

points, and has a worst case running time of Ot steps,

8.2 Jarvis NMarch

This is o parailel version of the Jarvis march algorithin. As with the serial versiono it will
work well when there are ouly a few ponas on tie halls such as wlien the convex Tl Is a

sipie poiseon. The aleorithn starts at anw extremun point o and finds the point wotha
nabes the tendmuin polar ancle with s the sext point on the Toatl The aleorivhn

'
I

then Londe the o pobr anele vo thi patnt, e sitep tepeats aronad the ool untdl

wotetarn to tee ortelual points To fnd each Bull point we need a few aeit e tie aperations
Jdaosinele max-reduce.
LFor o deall points, this algoritiom requires QUne) steps. but each step s so simple that '

i sote cases the algorithm is faster than the other algorithms mentioned.

8.3 1 Merge Hull

This atvorithm b5 o variation of o paraddlel dleorithm sueeested T "1 and independently

in b T heir atearinton is based orc the conenrrent read. exelosive wreite (CREAVY P-RAN]

ol W cionot wee theln deorithen divectly becaise thie sean-inodel does ot perni
a

conriitont aocess toa single valies a neceossary part of their aleonthm, The variation we

deccrhios heens 0 clements that reguire the <ame data in o conticnons seament so the

Gata e b bt nted usine o distobate coerntions Yhe connthation oF our version s

s s bt on et tead operation can hereplacad by thie distribute operation
v it a0 et odd o nased e thie next sectian, ke vhie ovieinal aleorithin.
the v o we desonthe vans with Ggle o calls to the prinitives We heein by poview e
the CRPW Gleoritlon.

o ateoiition =orts the points aceordine 1o their o coordinates Tt <lives thisc ardering ’ _-4

e 9

fto 2 egial sized set< ol points and recursively solves the conves il for eacl set, 16 ey a
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Bridges:

Figure 9: An example of the \/1 merge hull algorithm. The horizontal dashed lines show the
division of the points into /1 groups of \/i/ elements each. The subhulls within each group are

marked with solid lines. The upper chain (s the chain AB J O P

merges the /0 sublinlls (see Fieure 9). The sort and the merge both take Q(lgn) time!®.

The runnine time of the algorithim thus has the recurrence relation 7'(n) = T(Vn) + klgn
which vields O(lgn) time.

Since the elewents can be sorted using existing algorithms we will concentrate on the
merging step, Tlie merge is executed o two parts: one finds the upper chain of the convex
Indl and another finds the lower chain. The upper chain is the section of the convex hull
that rans across the top bhetween the two o maximae In the CREW algorithm the moerge
of cach chain works as follows,

The algorithm assigns an element (o processor) Tor cach pair of subbulls. Since there
are Vi subihllss oy elenents are satlicient, Paeh of tiese pairs independently finds the
ppper taneent line seepent! hetween oo two sahlintls using o serial method of Overnrs
i'_’l]. This method executes o binary search alternating between the two subhulls. and
requites Glle o) thores A the 27 cvep of the binary scarch, aun elonent will either g0 down
tie Jelt branehe thie viehn braveh or will stay <till,

Ouce the upper taneent lines bave heen found, the aleorithm determines the bridges

The gontion of Cobe [P e b necd o sorting in the CREW model.
i . . . . .
Ao upper tansent Line-seqment of two sets of points is the line that passes through at least one point

feomy ool wet so bt b arboe podect s tu the twa sets e below the Line,
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among the Vuosubhulls, “The bridges ave the npper tangent linessegiments that belons 1o

the upper cliain. To find which of the upper tangent lines are bridges, each sublinll finds "
. the Ligliest sloped line iu both directions (to a point on the right and to a point on the -

left). If the joint formed by these lines is convex, then both lines are bridges. If the joiut .
. formed by the lines is concave, neither are bridges. All edges on a subhull that lie between

bridges of that subliull also belong to the convex hull, ~
D s
y This algorithm cannot be implemented directly on the scan-model siuce eacli pair of :
y subliulls independently finds the upper tangent-line segments using the algorithn of Over- >
{ mars, and will therefore require concurrent reads: several pairs. while exccuting the binary g

scarch, will require access to the same elements. To avold the concurrent read. we place :
i. cach of the sets of /1 poiuts that belong to the siane subhull in its own segment. We then 3
N use a general binary scarch method described in the next section to execute the binary ::-
K, search. This search will require O(lg n) time. -
) Onr variation of the CREW algorithm runs with the same number of calls to the prim- )
- itives as the original since, as with the original. the sort runs in Oglg 1) tmes and. as ’

shown above, the merge alse runs in O{dg n) time. Inoa sense. this variation trades the the

concurrent read capability for the scan capability,

s
.

D JUN oy
. ' -
9 Binary Search ]
' .
- .—
. In this section we consider the problem of n elenients of a set 4 cach executing a binary .
- - . . . gy - . . -
. scarcli on a binary tree T owith e vertices. We assume that the tree T s organized in “3
. ) ~
a vector using the standard leap ordering: the root value is stored at 11 aud the two
gyl g . . - B} .. %
cliildren of a vertex stored at Ti] are stored at T72i) and T2 + 1]. With a coneurrcnt- b
. read primitive. a binary scareluis siiple: eacl element of A starts by reading the root of 4
.
) T, decides whiclh way to go, and follows a path down to the leaves based on a test and N
X some simple arithnetic at cach vertex. Such i search requires concurrent access by many '
elements of 4 to a sinele element of 1. -
: To execute the binary seavch using the scan pronitives instead of o concnrrent vead o
{ ~
Y primitive we can use aethod hased o reansive splitting, We start with alf the elements -
A
. of 4w asingle segment and then split that secment based on whethior au element is colng .
» to the right or to the et chibd of thie oot of 70 We thew tecnsively split within each of
~
these segrients, hased on data fronn the vest devel of thie trees Since all thie eleents of A .
. o
, that are accessing the sune vertex of 1wl Lein a contiguons sewient, we can ise thie et
) distribute operation to distrthbure the vaine frone cach vertes ol the tree to the elepents thaa
g
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need it

We now consider a eeneralization on the simple binary searcli. At cach step. as well as
allowing an element of -1 to go to the left or right child of the vertex of 7" it is currently at,
we allow it to remain at the same vertex of 7. This means that there might be clements of
Aot all tevels of the tree instead of at a single Jevel. We also allow new elements to enter
the search tree at each step. Figure 10 illustrates how we store the elements of # and an
exatnple of aostep of the generalized binary scarch.

Ta execute aostep of the binary search, we must somehow append the elements at a
vertex o that remain, with the elements being passed down from the parent of v To
appeud the elements: we can nse the append operation discussed in Section 3. The basic
idea is first to separate the clements that remain from those that go to a child into two

separate vectors using two pack operations. For the example of Figure 10 this would return:
remain = fao] [} [ad) 0 lus a@s) []  [az]
not-remain = fay] lap] fas) 0 01 1 0

We then split the ones going 1o a child based on whether they are going to the left or

rieht ehild using o split operation. This would return:

A splitnot-remain = | fa] [l 0 ) 00 00 0 0 0 00

We now shift the segments of the sphit vector right by one and insert the new elenients
in the left. Because of the heap order of 70 tlds will cause eacli segment to go to its child
segment. We also truncate the segments that correspond to clitldren of the leaf vertices.

These calculations would return:
children = fox  wo] [ [} [a2] [ [oa] ]

We now appoud the shifted vector (children) to the vector of elements that remained
i temain) using the append operation,

The following routine can be used 1o execute a step of the hinary scarch. The remainy
g ~pectfies elements that stav at the carrent vertexs and the right 7 hie specifios elements

that vo to the richt branch, Bare the new elements to he inserted at root,

define search-step( . 7. 1. reqar?. right 7){
remain — pack(AL romainyy;
not-remain — pack{ 1. not(remain?));
children — shift-segments-right( 3. split(not-remain. right?)):

appendiremain. childreny}
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Figure 10: An example of a step of the general binary search technique. We keep a segment

in -1 for each vertex of the tree 7' such that segment / corresponds to vertex /. Each segment
contains all elements at the corresponding vertex. The vector /' indicates an example of where
each element wants to go during a step of the search (r for right, | for left, and x for remain).

The vector If contains new elements entering at the root of the search at that step.
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This search step can be used to exeente the binary cearc b necdod by the 00 nerge
Ll algorithm discussed in Section ~30 Por the neree Lt no chenents got nserted inno
the trees but some clements do renain ot vheir current verte s dun e oo step of the b
searcln.

Birary scavch illustrates an important difference hetween the eonerad progrannniae stvle
uscd for concurrent read P-RAN models and for vector inodels. Tnothe PARAN model. the
problem is best thought of as o independent processes cuele exccuiing its own search on
the tree 7. In the scan model. wo must think of the n elements as woset and break that ot
into subsets according to which vertex of 7" cacli element is accessing. This might just be

a philosophical point. but we believe it is hiuportant,

10 Conclusions

Tlis paper introduces the idea of a vector model of computation: defines a particular vector
model, the sean-model; and describes several algorithns Tniplemented an the scan nodel.
Since miny of the wgorithms discussed in this paper are variants of known algorithims,
woe believe tad el of the contribution of 1his paper is to methodology rathier than to
alzorithis, The code we show in this paper with only slight syutactic chianges Las heen
used to fiapleent the algorithius described on the Connection Machine,

We believe that the algorithms we describe are very practical for iplementation on a
wide range of architectures, both serial and parallel, and shonld in most cases be almost as
fast on a particular architecture as algorithm designed specifically for that architecture!'?.
['his generality is one of the main advantages of the scan-model over the P-R AN modcls.
The adviantage arises both hecause the scan-model is a vector model, allowing efficient im-
pletentations on veetor processors and single iustruction parallel processars, and because it
Preats the scan operation as taking no more tiime than a permutation. a realistic assumption
for almost all architeetares,

hewore recent work we have been cousidering the effect of ineluding other operations
as it e prioitives. The operation we Tiave found most promising, is a variation of
Pl et e «»]»t'l'.lliUIIH. This operation can be implemented efficientdy ona wide range of
architectires and s wuselul for many aluotitlons, To nplement the merge operation an serial

architectires we can nse the standard meree operation, and on parallel architectures we can

S Bes 1~ not true for agcitectures witl fow connees tivity such as grid arcldtectures or tree architectures.
Civen two vectors cband B of mmmbeoso it retunns a o vector C of length A with indices into the vector

I8 These sndices point 1o where in Boan clement in A should merge.
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use a variation of Batcher's bitonic merge [7]. Algorithms to construct and manipulate the
planc-sweep tree data structure (3,1,5.23] can be greatly simplified with a unit-tinie merge
operation. We have also found the merge primitive useful for manipalating sets. We have
also considered sorting as a primitive, but we find it hard to argue that sorting should be
assumed to require the same time as a permutation.

We hiope that the paper will help spur further interest in designing algorithins for vector

models of computation.
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